

Diode models

Kizito NKURIKIYEYEZU, Ph.D.

Readings

Section 4.3 on pages 193-195

¹Readings are based on Sedra & Smith (2014), Microelectronic Circuits 7th edition. ²Bold reading section are mandatory. Other sections are suggested but not required readings

Kizito NKURIKIYEYEZU, Ph.D.

Diode models

June 1, 2022 1 / 11

How would you find I_D and V_D for the circuit in Fig. 2

The current through the diode is the same as the current through the resistor

$$I = \frac{V_{DD} - V_D}{R}$$

Similarly, from our previous lecture

$$I = I_s \left(e^{v/v_T} - 1 \right)$$

Combining Equation (1) and Equation (2) allows to solve for the unknowns

This approach is complex and not practical for real-world circuits

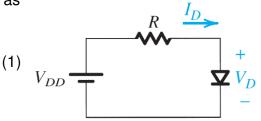


FIG 1. Illustrative diode circuit

How would you find I_D and V_D for the circuit in Fig. 2

The current through the diode is the same as the current through the resistor

$$I = \frac{V_{DD} - V_D}{R}$$

■ Similarly, from our previous lecture

$$I=I_{s}\left(e^{v/v_{ au}}-1
ight)$$

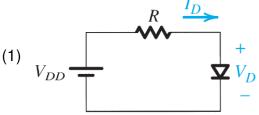


FIG 1. Illustrative diode circuit

Combining Equation (1) and Equation (2) allows to solve for the unknowns
 This approach is complex and not practical for real-world circuits.

(2)

How would you find I_D and V_D for the circuit in Fig. 2

The current through the diode is the same as the current through the resistor

$$I = \frac{V_{DD} - V_D}{R}$$

Similarly, from our previous lecture

$$I = I_s \left(e^{v/v_\tau} - 1 \right)$$

(1)

ממ

FIG 1. Illustrative diode circuit

- Combining Equation (1) and Equation (2) allows to solve for the unknowns
- This approach is complex and not practical

How would you find I_D and V_D for the circuit in Fig. 2

The current through the diode is the same as the current through the resistor

$$I = \frac{V_{DD} - V_D}{R}$$

■ Similarly, from our previous lecture

$$I = I_s \left(e^{v/V_T} - 1 \right)$$

- Combining Equation (1) and Equation (2) allows to solve for the unknowns
- This approach is complex and not practical for real-world circuits

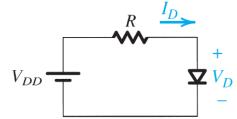


FIG 1. Illustrative diode circuit

(1)

(2)

- model —a mathematical description or electrical equivalent circuit that represents the behavior of a device or system
- In this lecture, we shall learn simplified diode models that are suited for circuit analysis:
 - Exponential model
 - Constant voltage-drop model
 - ideal diode model
 - small-signal model

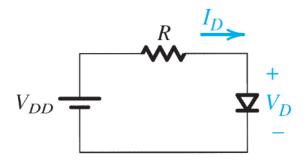
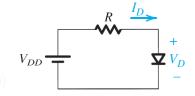
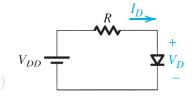



FIG 2. Illustrative diode circuit

Most accurate model

However, also most difficult to use:
 For V_{DD} > 0.5V, Equation (3) holds trained

$$l = l_s \left(e^{V_D/V_T} - 1 \right) \approx l_s \cdot e^{V_D/V_T}$$

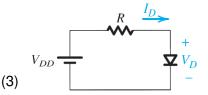

Since $I_D = I_R$, then

$$I_s \cdot e^{V_D/V_T} = \frac{V_{DD} - V_D}{R} \tag{4}$$

- Combining Equation (3) and Equation (4) allows to solve for V_D and I_D
- The value of V_D and I_D can also be obtained by graphical analysis and iterative analysis.

- Most accurate model
- However, also most difficult to use:
 - For $V_{DD} > 0.5V$, Equation (3) holds true

$$I = I_{s} \left(e^{V_{D}/V_{T}} - 1 \right) \approx I_{s} \cdot e^{V_{D}/V_{T}}$$

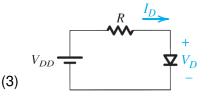

■ Since $I_D = I_R$, then

$$I_s \cdot e^{V_D/V_T} = \frac{V_{DD} - V_D}{R} \tag{4}$$

- Combining Equation (3) and Equation (4) allows to solve for V_D and I_D
- The value of V_D and I_D can also be obtained by graphical analysis and iterative analysis.

- Most accurate model
- However, also most difficult to use:
 - For $V_{DD} > 0.5V$, Equation (3) holds true

$$I = I_{s} \left(e^{V_{D}/V_{T}} - 1 \right) \approx I_{s} \cdot e^{V_{D}/V_{T}}$$

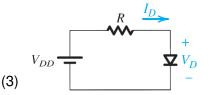

• Since $I_D = I_R$, then

$$I_s \cdot e^{V_D/V_T} = \frac{V_{DD} - V_D}{R} \tag{4}$$

- Combining Equation (3) and Equation (4) allows to solve for V_D and I_D
- The value of V_D and I_D can also be obtained by graphical analysis and iterative analysis.

- Most accurate model
- However, also most difficult to use:
 - For $V_{DD} > 0.5 V$, Equation (3) holds true

$$I = I_{s} \left(e^{V_{D}/V_{T}} - 1 \right) \approx I_{s} \cdot e^{V_{D}/V_{T}}$$


■ Since $I_D = I_R$, then

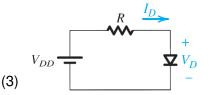
$$I_s \cdot \mathbf{e}^{V_D/V_T} = \frac{V_{DD} - V_D}{R} \tag{4}$$

- Combining Equation (3) and Equation (4) allows to solve for V_D and I_D
- The value of V_D and I_D can also be obtained by graphical analysis and iterative analysis.

- Most accurate model
- However, also most difficult to use:
 - For $V_{DD} > 0.5 V$, Equation (3) holds true

$$I = I_{s} \left(e^{V_{D}/V_{T}} - 1 \right) \approx I_{s} \cdot e^{V_{D}/V_{T}}$$

• Since $I_D = I_R$, then

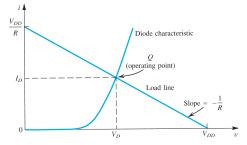

$$I_s \cdot e^{V_D/V_T} = \frac{V_{DD} - V_D}{R}$$
(4)

Combining Equation (3) and Equation (4) allows to solve for V_D and I_D

The value of V_D and I_D can also be obtained by graphical analysis and iterative analysis.

- Most accurate model
- However, also most difficult to use:
 - For $V_{DD} > 0.5 V$, Equation (3) holds true

$$I = I_{s} \left(e^{V_{D}/V_{T}} - 1 \right) \approx I_{s} \cdot e^{V_{D}/V_{T}}$$


• Since
$$I_D = I_R$$
, then

$$I_s \cdot e^{V_D/V_T} = \frac{V_{DD} - V_D}{R}$$
(4)

- Combining Equation (3) and Equation (4) allows to solve for V_D and I_D
- The value of V_D and I_D can also be obtained by graphical analysis and iterative analysis.

Graphical analysis

- Plot the relationships of Equation (3) and Equation (4) on an *i*-v plane.
- The solution is the Q-point—which is the coordinates of the point of intersection of the two graphs
- The Q point is also known as the operating point, the bias point, or quiescent point¹
- The Q-point is the steady-state voltage or current at a specified terminal of an active diode with no input signal applied ²

FIG 3. Illustration of the graphical analysis method using the exponential diode model

²For details, please refer to the The Importance of the Q Point of a Diode to Circuit Functionality ³https://en.wikipedia.org/wiki/Biasing

Kizito NKURIKIYEYEZU, Ph.D.

Diode models

¹The graphical analysis is only used for visualization of simple circuit but it is tedious for complex circuit; thus, is seldomly used in practice

Iterative analysis¹

EXAMPLE—Find I_D and V_D for the circuit in Section 1 when $V_{DD} = 5V$ and R = 1k. Assume that the diode has a current of $I_D = 1 mA$ at a voltage of $V_D = 0.7V$.

■ *I_D* is found by KVL

$$I_{D} = \frac{V_{DD} - V_{D}}{R} = \frac{5V - 0.5V}{1k} = 4.3mA (5)$$

$$V_{D} \text{ is deducted from}$$

$$V_{2} - V_{1} = 2.3V_{T} \cdot log(l_{2}/l_{1}) (6)$$

7

Since $2.3V_T = 60mV$, then

$$V_2 = V_1 + 0.06 \cdot log(l_2/l_1)$$
 (7)

¹See detailed algebraic solution at https://en.wikipedia.org/wiki/Diode_modelling#Iterative_solution Kizito NKURIKIYEYEZU, Ph.D. Diode models June 1, 2022 6/11

Iterative analysis¹

- The first iteration assumes $V_1 = 0.7V$, $I_1 = 1 mA$ and $I_2 = 4.3mA$ that we calculated earlier. Thus, $V_D = 0.738V$
- The second iteration goes through the same process

$$I_{D} = \frac{V_{DD} - V_{D}}{R} = \frac{5V - 0.738V}{1k} = 4.262mA$$

$$V_{2} = V_{1} + 0.06 \cdot log(l_{2}/l_{1})$$

$$= 0.738V + 0.06 \cdot log(4.262/4.3)$$

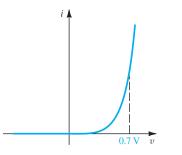
$$= 0.738V$$
(8)
(9)

- The iteration can continue but the second iteration yielded values close to the first iteration, there is no reason to continue any further.
- Thus, $I_D \approx 4.262 mA$ and $V_D \approx 0.738 V$

¹See detailed algebraic solution at https://en.wikipedia.org/wiki/Diode_modelling#Iterative_solution Kizito NKURIKIYEYEZU, Ph.D. Diode models June 1, 2022 7 / 11

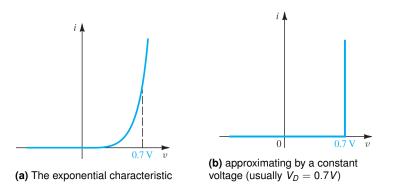
This method is simple and very accurate

- However, it is very slow and not practical. Circuit design requires evaluating various possibility before making a suitable design
- In practice, analog circuit design is something of an art. Although it is possible to predict the behavior of a very simple circuit mathematically, there are so many factors to consider in a more complicated circuit that the calculations become impossibly convoluted
- It is best to use less accurate methods and verify the design with computer analysis tools such as SPICE


- This method is simple and very accurate
- However, it is very slow and not practical. Circuit design requires evaluating various possibility before making a suitable design
- In practice, analog circuit design is something of an art. Although it is possible to predict the behavior of a very simple circuit mathematically, there are so many factors to consider in a more complicated circuit that the calculations become impossibly convoluted
- It is best to use less accurate methods and verify the design with computer analysis tools such as SPICE

- This method is simple and very accurate
- However, it is very slow and not practical. Circuit design requires evaluating various possibility before making a suitable design
- In practice, analog circuit design is something of an art. Although it is possible to predict the behavior of a very simple circuit mathematically, there are so many factors to consider in a more complicated circuit that the calculations become impossibly convoluted
- It is best to use less accurate methods and verify the design with computer analysis tools such as SPICE

- This method is simple and very accurate
- However, it is very slow and not practical. Circuit design requires evaluating various possibility before making a suitable design
- In practice, analog circuit design is something of an art. Although it is possible to predict the behavior of a very simple circuit mathematically, there are so many factors to consider in a more complicated circuit that the calculations become impossibly convoluted
- It is best to use less accurate methods and verify the design with computer analysis tools such as SPICE


- The simplest and most widely used diode model in the initial phases of analysis and design
- Since the forward-conducting diode has a voltage drop that varies in a relatively narrow range (usually between 0.6 to 0.8 V), assumes that the slope of the i-v curve is vertical at $V_D = 0.7V$

- The simplest and most widely used diode model in the initial phases of analysis and design
- Since the forward-conducting diode has a voltage drop that varies in a relatively narrow range (usually between 0.6 to 0.8 V), assumes that the slope of the i-v curve is vertical at $V_D = 0.7V$

(a) The exponential characteristic

- The simplest and most widely used diode model in the initial phases of analysis and design
- Since the forward-conducting diode has a voltage drop that varies in a relatively narrow range (usually between 0.6 to 0.8 V), assumes that the slope of the i-v curve is vertical at $V_D = 0.7 V$

- The simplest and most widely used diode model in the initial phases of analysis and design
- Since the forward-conducting diode has a voltage drop that varies in a relatively narrow range (usually between 0.6 to 0.8 V), assumes that that the slope of the i-v curve is vertical at $V_D = 0.7V$ *i*

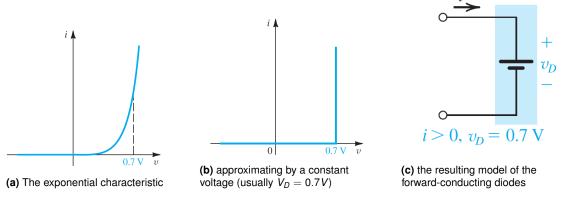
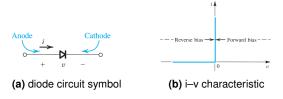
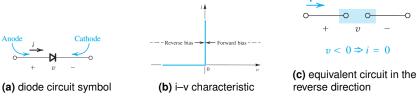


FIG 4. Development of the diode constant-voltage-drop model:


Kizito NKURIKIYEYEZU, Ph.D.	Diode models	June 1, 2022	9 / 11

- Useful for applications that involve voltages much greater than the diode voltage drop
- In this case, we may neglect the diode voltage drop altogether while calculating the diode current.
- In summary, the ideal diode model assumes that the slope of i-v curve is vertical at $V_D = 0V$



(a) diode circuit symbol

- Useful for applications that involve voltages much greater than the diode voltage drop
- In this case, we may neglect the diode voltage drop altogether while calculating the diode current.
- In summary, the ideal diode model assumes that the slope of i-v curve is vertical at $V_D = 0V$

- Useful for applications that involve voltages much greater than the diode voltage drop
- In this case, we may neglect the diode voltage drop altogether while calculating the diode current.
- In summary, the ideal diode model assumes that the slope of i-v curve is vertical at $V_D = 0V$

- Useful for applications that involve voltages much greater than the diode voltage drop
- In this case, we may neglect the diode voltage drop altogether while calculating the diode current.
- In summary, the ideal diode model assumes that the slope of i-v curve is vertical at $V_D = 0V$

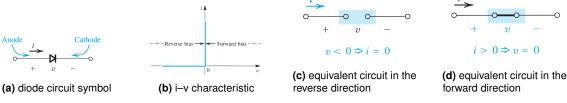


FIG 5. The ideal diode model

- exponential model
 - Iow voltages
 - less complex circuits
 - emphasis on accuracy over practicality

- exponential model
 - Iow voltages
 - less complex circuits
 - emphasis on accuracy over practicality
- constant voltage-drop mode
 - medium voltages = 0.7V
 - more complex circuits
 - emphasis on practicality over accuracy

- exponential model
 - Iow voltages
 - less complex circuits
 - emphasis on accuracy over practicality
- constant voltage-drop mode
 - medium voltages = 0.7V
 - more complex circuits
 - emphasis on practicality over accuracy

- ideal diode model
 - high voltages » 0.7V
 - very complex circuits
 - cases where a difference in voltage by 0.7V is negligible

- exponential model
 - Iow voltages
 - less complex circuits
 - emphasis on accuracy over practicality
- constant voltage-drop mode
 - medium voltages = 0.7V
 - more complex circuits
 - emphasis on practicality over accuracy

- ideal diode model
 - high voltages » 0.7V
 - very complex circuits
 - cases where a difference in voltage by 0.7V is negligible
- small-signal model
 - Coming soon!